Convolución discreta

Convolución discreta
Una de las propiedades más importantes de los sistemas es la linealidad. Esta propiedad a su vez se divide en dos propiedades conocidas como propiedad aditiva y propiedad de escalamiento. La propiedad aditiva establece que si al sistema ingresa la suma de varias señales, la respuesta del sistema será la suma de las respuestas a cada una de las entradas individuales.
La propiedad de escalamiento u homogeneidad establece que si una señal $x(t)$ tiene como respuesta una señal $y(t)$, al ser escalada la entrada (o multiplicada por una constante) $\alpha x(t)$, su salida será también escalada por la misa constante $\alpha y(t)$. Juntas, la propiedad de escalamiento y la aditiva se conocer como propiedad de superposición, la cual se sintetiza en la siguiente ecuación.
\begin{equation}\label{eq:superpos_1} \alpha {x_1}\left( t \right) + \beta {x_2}\left( t \right) \to \alpha {y_1}\left( t \right) + \beta {y_2}\left( t \right) \end{equation}
Otra de las propiedad importante de los sistemas es la propiedad de invarianza la tiempo, detallada en la siguiente ecuación.
\begin{equation}\label{eq:inv_tiempo} \begin{matrix} {x\left( t \right) \to y\left( t \right)} \cr {x\left( {t - {t_0}} \right) \to y\left( {t - {t_0}} \right)} \cr \end{matrix} \end{equation}
En sí, un sistema es invariante al tiempo cuando una desplazamiento en la señal de entrada produce el mismo desplazamiento en la señal de salida o respuesta del sistema. Es decir, el sistema no cambia sus características a lo largo del tiempo.
Cuando un sistema cumple con la propiedad de linealidad (o propiedad de superposición) y la propiedad de ser invariante al tiempo se conoce como sistema lineal e invariante al tiempo, abreviado como SLTI. Muchos sistemas empleados en comunicaciones son SLTI. De ahí la importancia de conocer las características de este tipo de sistema y la forma de encontrar la respuesta del mismo o salida del sistema.
Para un sistema discreto, la forma de encontrar la salida de este sistema es a través de una operación conocida como suma de convolución. Para llegar a este resultado, lo primero es representar la señal discreta $x[n]$ como una combinación lineal del impulsos desplazados ponderados.
\begin{equation}\label{eq:impulso_des_pond} x\left[ n \right] = \sum\limits_{k = - \infty }^{ + \infty } {x\left[ k \right]\delta [n - k]} \end{equation}
Dado que el sistema es lineal, la respuesta será también una combinación lineal, pero de las respuestas a cada una de las entradas individuales. Como la señal ha sido representada como una suma de señales impulso, la respuesta a esta señal se asigna de la siguiente manera:
\begin{equation}\label{eq:impulso_des_pond2} \delta [n - k] \to {h_k}[n] \end{equation}
De esa forma, la salida total del sistema será la superposición de las salidas a cada una de las entradas.
\begin{equation}\label{eq:impulso_des_pond3} y\left[ n \right] = \sum\limits_{k = - \infty }^{ + \infty } {x\left[ k \right]{h_k}[n]} \end{equation}
Si el sistema es invariante al tiempo, la respuesta a un impulso desplazado será la misma respuesta a un impulso en $n=0$ simplemente desplazada.
\begin{equation}\label{eq:impulso_des_pond4} \delta [n - k] \to {h_0}[n - k] \end{equation}
De esa forma, la salida del sistema es calculada con la siguiente ecuación, que es conocida como la suma de convolución o convolución discreta.
\begin{equation}\label{eq:impulso_des_pond5} y\left[ n \right] = \sum\limits_{k = - \infty }^{ + \infty } {x\left[ k \right]h[n - k]} \end{equation} Referencia: Oppenheim, A., Willsky,A., Nawab, S. (1996). Signals and Systems (2nd Ed.). Prentice-Hall. Upper Saddle River, NJ, USA.

Impulso y escalón unitarios

Impulso y escalón unitario La estrategia para procesar o tratar una señal es representar (o descomponer) dicha señal en una combinación lineal de señales base. En el análisis de la señal en el tiempo, dicha señal base es el impulso unitario $\delta[n]$ (para tiempo discreto) y $\delta(t)$ para tiempo continuo. Un impulso discreto está definido conforme la siguiente ecuación. \begin{equation}\label{eq:impul_discreto} \delta \left[ n \right] = \left\{ \begin{matrix} {1,} & {n = 0} \cr {0,} & {n \ne 0} \cr \end{matrix} \right. \end{equation} Es decir, un impulso es una señal que tiene un valor no nulo apenas en un instante de tiempo.
El escalón unitario discreto es aquella señal que puede considerarse constante a partir del instante 0. Se denota como $u[n]$. \begin{equation}\label{eq:esca_discreto} u\left[ n \right] = \left\{ \begin{matrix} {1,} & {n \ge 0} \cr {0,} & {n < 0} \cr \end{matrix} \right. \end{equation} En la gráfica de la Figura siguiente del escalón se observa que de alguna forma puede ser representado como un conjunto de señales impulso.
Es así, que el escalón unitario discreto puede generarse a partir del impulso unitario a través de la siguiente ecuación. \begin{equation}\label{eq:esca_discreto_imp1} u[n] = \sum\limits_{k = 0}^{ + \infty } {\delta \left[ {n - k} \right]} \end{equation} En esta última ecuación, el impulso se va desplazando dentro de una ventana fija del sumatorio. Una expresión alternativa es presentada en la siguiente ecuación, donde la ventana del sumatorio es móvil y el impulso fijo. \begin{equation}\label{eq:esca_discreto_imp2} u[n] = \sum\limits_{m = - \infty }^n {\delta [m]} \end{equation} Un impulso puede obtenerse a partir de la primera diferencia del escalón a través de la ecuación siguiente. \begin{equation}\label{eq:esca_discreto_imp3} \delta \left[ n \right] = u[n] - u[n - 1] \end{equation} En tiempo continuo, el escalón e impulso unitario tienen una representación semejante. Un escalón unitario continuo está definido conforme la ecuación siguiente. \begin{equation}\label{eq:esca_continuo} u(t) = \left\{ \begin{matrix} {1,} & {t > 0} \cr {0,} & {t < 0} \cr \end{matrix} \right. \end{equation} Esta señal es constante a partir de $t>0$.
Para definir al impulso unitario, usamos la función $\delta_{\delta}(t)$ detallada en la ecuación siguiente. \begin{equation}\label{eq:delta_sub_Delta} {\delta _\Delta }(t) = \left\{ \begin{matrix} {{1 \over \Delta },} & {0 < t < \Delta } \cr {0,} & {otro{\kern 1pt} {\kern 1pt} {\kern 1pt} valor} \cr \end{matrix} \right. \end{equation} Esta señal $\delta_{\delta}(t)$ tiene siempre área igual a uno para todo valor de $\Delta$. De esa forma, el impulso unitario se define como el límite de esta señal cuando $\Delta$ tiende a cero. \begin{equation}\label{eq:delta_sub_Delta2} \delta (t) = \mathop {\lim }\limits_{\Delta \to 0} {\delta _\Delta }(t) \end{equation} La gráfica del impulso unitario continuo es semejante al impulso discreto, con la diferencia que el valor que se colocar cerca de la flecha es su área.
Tal como el caso discreto, el impulso se puede obtener a partir del escalón a través de la derivada usando la ecuación siguiente. \begin{equation}\label{eq:delta_escalon_1} \delta (t) = {{\partial u(t)} \over {\partial t}} \end{equation} Y el escalón a través del impulso con las ecuaciones siguientes. \begin{equation}\label{eq:delta_escalon_2} u(t) = \int\limits_{ - \infty }^t {\delta (\tau )} d\tau \end{equation} \begin{equation}\label{eq:delta_escalon_3} u(t) = \int\limits_0^\infty {\delta (t - \sigma )} d\sigma \end{equation} Referencia: Oppenheim, A., Willsky,A., Nawab, S. (1996). Signals and Systems (2nd Ed.). Prentice-Hall. Upper Saddle River, NJ, USA.

Exponencial periódica compleja

Exponencial periódica compleja
Una señal $x(t)$ es periódica si se repite su formato a lo largo del tiempo. Matemáticamente, una señal es periódica si cumple $x(t)=x(t+T)$ para todo tiempo $t$, donde $T$ es el periodo de la señal. Este periodo es un número mayor que cero y está definido como el mínimo tiempo para el cual $x(t)=x(t+T)$ se cumple.
Una clase particular de señales continuas periódicas son las exponenciales complejas $e^{j\omega_0 t}$, donde $\omega_0$ es la frecuencia angular medida en radianes por segundo (rad/s). Esta señal es periódica con periodo $T=2\pi/\omega_0$. La frecuencia angular $\omega_0$ también se puede expresar en hertz (Hz) usando la relación $\omega_0=2\pi f$, donde $f$ es la frecuencia nominal. Si usamos la relación de Euler $e^{j\omega_0t}=cos(\omega_0t)+jsen(\omega_0t)$ podemos notar que en sí una exponencial compleja es un par de señales senoidales.
Esta señal exponencial compleja es muy importante en el procesamiento de una señal debido a que es una auto-función (o eigen-función) de los sistemas lineales e invariantes al tiempo (SLTI). Es decir, si una exponencial compleja continua entra a un SLTI, la respuesta de este sistema es la misma exponencial compleja simplemente multiplicada por una constante compleja $H(s)$ (llamado eigen-valor). Esto lo veremos en la parte del análisis de Fourier de señales.
En el caso de las exponenciales complejas discretas $x[n]=e^{j\omega_0n}$, no toda exponencial compleja es periódica. Se debe cumplir que $\omega_0/2\pi$ debe ser un número racional $M/N$ , donde $N$ es el periodo que es igual a $N=\omega_0/2\pi$. Otra diferencia con su contra parte continua es que esta señal es periódica cada $2\pi$, es decir $e^{j\omega_0n}=e^{j(\omega_0+2\pi)n}$. Conforme la frecuencia angular va de 0 a $\pi$, la frecuencia de esta señal aumenta y mientras va de $\pi$ hasta $2\pi$ la frecuencia disminuye. Es así, que si una señal exponencial compleja tiene su concentración de frecuencia en torno de 0, $2\pi$ o múltiplos pares de $\pi$ se dice que es una señal de baja frecuencia. Si su frecuencia está concentrada en torno de $\pi$ o múltiplos impares de $\pi$, es una señal de alta frecuencia.