import numpy as np import pylab as plt from scipy.fftpack import fft N = 500 # number of sample points dt = 1. / 1000 # sample spacing npp=3 nN=N*npp t = np.linspace(-N*dt, N*dt, nN) y=np.sinc(200*t) #y=np.abs(np.sinc(t)) plt.figure(1) plt.plot(t,y) plt.grid(True), plt.xlabel('Tiempo') plt.title(u'Sinc(200t)') plt.xlim([-6./200,6./200]) # FFT yf = fft(y) tf = npp*np.linspace(-1./(4.*dt), 1./(4.*dt), nN) spectrum = 1./nN * np.concatenate([np.abs(yf[nN/2:nN]), np.abs(yf[0:nN/2])]) #figure1 = plt.figure(4, (10, 5)) plt.figure(2) plt.plot(tf, spectrum, '-') plt.grid() plt.xlim([-300,300]) plt.title(u'Espectro de magnitud |X(j$\omega$)|') plt.xlabel('Frecuencia [Hz]') plt.ylabel('Magnitud |X(j$\omega$)|')
Transformada de Fourier de la función Sinc.
Suscribirse a:
Comentarios de la entrada (Atom)
No hay comentarios.:
Publicar un comentario