- import numpy as np
- import pylab as pl
- T1=1
- T=4*T1
- w0=2*np.pi/T
- k=np.arange(-40*w0,40*w0,w0)
- ak=(2.0*T1)*np.sinc(k)
- pl.subplot(4,1,1)
- pl.stem(k,ak*T)
- pl.hold(True)
- ke=np.arange(-40*w0,40*w0,w0/10)
- ake=(2.0*T1)*np.sinc(ke)
- pl.plot(ke,ake*T,'r--')
- pl.hold(False)
- pl.grid(True)
- pl.xlim([-15,15])
- T=8*T1
- w0=2*np.pi/T
- k=np.arange(-40*w0,40*w0,w0)
- ak=(2.0*T1)*np.sinc(k)
- pl.subplot(4,1,2)
- pl.stem(k,ak*T)
- pl.hold(True)
- ke=np.arange(-40*w0,40*w0,w0/10)
- ake=(2.0*T1)*np.sinc(ke)
- pl.plot(ke,ake*T,'r--')
- pl.hold(False)
- pl.grid(True)
- pl.xlim([-15,15])
- T=16*T1
- w0=2*np.pi/T
- k=np.arange(-40*w0,40*w0,w0)
- ak=(2.0*T1)*np.sinc(k)
- pl.subplot(4,1,3)
- pl.stem(k,ak*T)
- pl.hold(True)
- ke=np.arange(-40*w0,40*w0,w0/10)
- ake=(2.0*T1)*np.sinc(ke)
- pl.plot(ke,ake*T,'r--')
- pl.hold(False)
- pl.grid(True)
- pl.xlim([-15,15])
- T=32*T1
- w0=2*np.pi/T
- k=np.arange(-80*w0,80*w0,w0)
- ak=(2.0*T1)*np.sinc(k)
- pl.subplot(4,1,4)
- pl.stem(k,ak*T)
- pl.hold(True)
- ke=np.arange(-40*w0,40*w0,w0/10)
- ake=(2.0*T1)*np.sinc(ke)
- pl.plot(ke,ake*T,'r--')
- pl.hold(False)
- pl.grid(True)
- pl.xlim([-15,15])
Coeficientes de la serie de Fourier conforme T tiende al infinito.
Suscribirse a:
Comentarios de la entrada (Atom)
No hay comentarios.:
Publicar un comentario